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Welcome to IWDSP 2016

Dear participants,

on behalf of the Programme and Local Committees, I am pleased to welcome you
to IWDSP 2016,The First International Workshop on Dynamic Scheduling Prob-
lems, and to the Faculty ofMathematics andComputer Science, AdamMickiewicz
University in Poznań, which is the host of the event.

This workshop is focused on dynamic scheduling problems defined by parame-
ters whose values are varying in time. Problems of this kind appear in many
applications, the most common examples are scheduling problems with time-,
position- and resource-dependent job processing times. The aim of IWDSP 2016
is to present recent research in this important domain of scheduling theory.

The Programme Committee, supported by the members of Advisory Committee
and external reviewers, selected for presentation at IWDSP 2016 talks submitted
by the authors fromAustralia, Belarus, Canada, China, France, Israel, Poland, Rus-
sian Federation, Taiwan and United Kingdom. The quality of these talks allowed
to prepare an attractive scientific programme of IWDSP 2016.

I wish you all the pleasant stay in Poznań and an enjoyable workshop, expressing
the hope that you will find IWDSP 2016 stimulating for your further research.

Stanisław Gawiejnowicz
The Chair of the Programme Committee

The Chair of the Local Committee
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Location

IWDSP 2016 takes place at the Faculty of Mathematics and Computer Science,
AdamMickiewicz University in Poznań, Umultowska 87, 61-614 Poznań.

The faculty is located in a new part of Adam Mickiewicz University in Poznań,
called Morasko campus (for details see attached map).

Communication

The quickest way to reach the venue of IWDSP 2016 is to take tram no. 12, 14
or 16 of Poznań Rapid Tram, get off at final stop (’Os. Sobieskiego’, for timetable
see www.mpk.poznan.pl) and make a short walk to the Morasko campus (for
suggested route see attached map).

Registration

Registration desk for IWDSP 2016 will be located in the main hall of the Faculty
of the Mathematics and Computer Science.

Registration will be possible on Wednesday, June 29th at evening, and on Thurs-
day, June 30th at morning.

Presentation room

Plenary lecture and all presentations during IWDSP 2016 will take place in the
Faculty Council Room (A1-33, see the attached map).

The room is equipped with a computer projector for handling presentations in
typical formats such as PDF or PPT.

Coffee breaks room

Coffee breaks will take place in Professors’ Club (A0-13) that is located one floor
below the Faculty Council Room (for details see attached map).

Internet access

Wireless network is available in the building of the Faculty of Mathematics and
Computer Science.

Details concerning usernames and passwords will be given during registration.
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Welcome party, lunches and conference dinner

On Wednesday, June 29th in the afternoon, in Professors’ Club of the Faculty of
Mathematics and Computer Science there will be organized Welcome Party.

Lunches at June 30th and July 1st will be served in Professors’ Club.

Conference dinner will be organized outside the Morasko campus. Details con-
cerning the dinner will be given during registration.

Social programme

On Friday, July 1st in the morning, there will be organized a walking guided tour
including the main tourist attractions of Poznań.

14 The First International Workshop on Dynamic Scheduling Problems
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Figure 1: The main part of Morasko campus (source: Open Street Map)
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Thursday, June 30th, 2016

08:00 – 08:30 Registration
08:30 – 09:00 Opening
09:00 – 10:20 Session no. 1

Speakers: Yakov M. Shafransky, Gur Mosheiov
Chair: Vitaly A. Strusevich

10:20 – 10:40 Coffee break
10:40 – 12:00 Plenary lecture

Speaker: Marc Uetz
Chair: Stanisław Gawiejnowicz

12:00 – 13:30 Lunch break
13:30 – 14:50 Session no. 2

Speakers: Bartłomiej Przybylski, Vitaly A. Strusevich
Chair: Mikhail Y. Kovalyov

14:50 – 15:10 Coffee break
15:10 – 16:30 Session no. 3

Speakers: Stanisław Gawiejnowicz, Alexander Kononov
Chair: Gur Mosheiov

16:30 – 16:50 Coffee break
19:30 – 22:00 Conference dinner

Friday, July 1st, 2016

08:00 – 12:00 Guided tour
12:00 – 13:30 Lunch break
13:30 – 14:50 Session no. 4

Speakers: Dvir Shabtay, Wiesław Kurc
Chair: Alexander Kononov

14:50 – 15:10 Coffee break
15:10 – 16:30 Session no. 5

Speakers: Mikhail Y. Kovalyov, Joanna Berlińska
Chair: Dvir Shabtay

16:30 – 16:50 Coffee break
16:50 – 18:10 Session no. 6

Speakers: Bertrand M-T. Lin, Krzysztof M. Ocetkiewicz
Chair: Stanisław Gawiejnowicz

18:10 Closing
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Approximation algorithms for scheduling under uncertainty

Marc Uetz*
University of Twente, Enschede, The Netherlands
Keywords: stochastic scheduling, approximation algorithms, linear programming

1 Introduction

We address machine scheduling problems with stochastic processing times, when
the objective is to minimize the expected value of the total weighted completion
time. We give an overview of LP-based scheduling policies with provable perfor-
mance guarantees. The obtained performance bounds depend linearly on the
squared coefficient of the variation of underlying processing time distributions.

We are focused on the problem to minimize the total weighted completion time
on identical parallel machines, denoted P | |

∑
wjCj in the three-field notation

of Graham et al. [4], or on unrelated parallel machines, denoted R | |
∑

wjCj.
Both problems are among the most-studied problems in the theory of schedul-
ing. The former is stronglyNP-hard [8] and admits a PTAS [1], while the latter
is MaxSNP-hard [6], and a 3

2 -approximation algorithm is known for it, e.g. [2].

We here address the variant where the processing times of jobs are random vari-
ables. The solution is then no longer a schedule, but a more complicated object
called non-anticipatory scheduling policy [9]. Roughly speaking, for any state that
the system might be in, a policy prescribes which job is to be scheduled next. For
a given scheduling policy, the objective function

∑
j wjCj is then a random vari-

able, too, and our goal is to minimize its expected value, which by linearity of
expectation equals

∑
j wjE[Cj].

The problem under consideration is defined as follows. We are given a set of jobs J
of cardinality n with job weights wj ∈ Z>0, and a set of identical or unrelated par-
allel machines M of cardinality m. Moreover, we are given a random variable Pij
that describes the possible outcomes for job j’s processing time on machine i, for
every job j ∈ J and every machine i ∈ M. For the special case with identical par-
allel machines, Pj denotes the random variable for job j’s processing time. Each
job j needs to be executed on any one of the machines i ∈ M, and each machine
can process at most one job at a time. The random variables Pij and Pj are stochas-
tically independent across jobs.

* Plenary speaker, email: m.uetz@utwente.nl
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2 Performance guarantees

We can compute, in polynomial time, scheduling policies with provable expected
performance bymeans ofLP relaxations. The basic idea is first to solve a certain LP
relaxation, then derive from its solution a scheduling policy, and finally compare
its expected performance with that of the relaxation. As the LP relaxation lower
bounds the expected performance of any scheduling policy, this yields the desired
performance guarantee.

The following table summarizes our (multiplicative) performance bounds for the
two problems with identical and unrelated machines, respectively. Here, ε > 0
can be chosen arbitrarily small, and parameter Δ upper bounds the squared co-
efficient of variation CV2[Pij] =

Var[Pij]
E2[Pij] for all Pij. The third column shows the

results for uniform and exponential distributions for CV[Pij] ≤ 1.

Stochastic scheduling Worst-case performance guarantee Reference
problem Arbitrary Pij CV[Pij] ≤ 1

P | |E
[∑

wjCj
]

3
2 +

Δ
2 − Δ+1

2m 2− 1
m [10]

R | |E
[∑

wjCj
]

3
2 +

Δ
2 + ε 2+ ε [12]

3 Techniques for relaxations and scheduling policies

The LP relaxation for the problem with identical parallel machines simply uses
variables CLP

j to denote the LP completion time of job j. It can be shown that the
following is a valid LP relaxation:

min
∑

j∈J
wj CLP

j

s.t.
∑

j∈W
E[Pj]CLP

j ≥ f(W) , for allW ⊆ J,

where f(W) := 1
2m

(∑
j∈W E[Pj]

)2
+ 1

2
∑

j∈W E[Pj]2 −
( 1
2 −

1
2m

)∑
j∈WVar[Pj].

These inequalities, for the special case of deterministic processing times where
Var[Pj] = 0, have been used also before [5]. This LP is a polymatroid, and there-
fore its optimal solution can be computed combinatorially using Edmonds’ greedy
algorithm [3]. The scheduling policy that achieves the performance bound 3

2 +
Δ
2 − Δ+1

2m is the stochastic variant of Smith’s rule: greedily schedule the jobs in
order of non-increasing ratios wj

E[Pj] .
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For the problem with unrelated machines, we use a time-indexed LP relaxation,
based on variables xijt that denote the probability to start job j on machine i at
time t. Using these variables, a valid LP relaxation for the problem is as follows:

min
∑

j∈J
wj CLP

j

s.t.
∑

i∈M

∑
t∈Z≥0

xijt = 1 for all j ∈ J,∑
j∈J

∑s

t=0
xijt qij s−t ≤ 1 for all i ∈ M, s ∈ Z≥0,

CLP
j =

∑
i∈M

∑
t∈Z≥0

xijt (t+ E[Pij]) for all j ∈ J,

xijt ≥ 0 for all j ∈ J, i ∈ M, t ∈ Z≥0.

Note that the variables CLP
j are completely determined by xijt and only included

for convenience. We can show that one can solve this LP with arbitrary precision
in polynomial time. The algorithm to translate the LP solution into a scheduling
policy is to assign job j to machine i at random, namely with probability

∑
t xijt.

The jobs assigned to a given machine i are then again sequenced as in Smith’s rule.
That policy achieves the performance bound of 3

2 +
Δ
2 + ε.

4 Concluding remarks

Our results can also be generalized to include problems, where jobs have indi-
vidual release dates rj. Then, the LPs are simply augmented with release dates,
i.e. CLP

j ≥ rj, and also for identical parallel machines the scheduling policy is
no longer Smith’s rule, but we schedule the jobs in order of non-decreasing LP
completion times CLP

j . The performance bounds are equal to 2 + Δ for identical
parallel machines [11] and to 2+ Δ+ ε for unrelated machines [12].

It can also be shown that the dependence of the performance bounds on the
squared coefficient of variation is asymptotically tight. The most intriguing open
problem is to get rid of the dependence of the performance bounds on the coef-
ficient of variation Δ, and obtain constant bounds for arbitrary processing time
distributions. Some progress in that direction has very recently been obtained [7].
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Scheduling data gathering with variable communication
speed

Joanna Berlińska*
AdamMickiewicz University in Poznań, Poznań, Poland
Keywords: scheduling, data gathering networks, variable communication speed

1 Introduction

Gathering data from remote processors is an important stage of many applica-
tions. Running computations in distributed systems requires collecting results
obtained by many workers. Wireless sensor networks collecting data find envi-
ronmental, military, health and home applications [1]. Specific communication
protocols have been designed for wireless sensor networks to increase data gath-
ering efficiency [5, 6, 9]. General scheduling algorithms for data gathering were
proposed in [2, 3, 4, 7]. It was assumed in these papers that the network parame-
ters, such as the speed of communication and processing, are constant. However,
in reality the communication speed often changes because of sharing communi-
cation links with other users, maintenance activities etc. Hence, in this work we
study scheduling for data gathering networks with variable communication speed.

2 Problem formulation

We analyze a star network consisting ofm nodes P1, P2, . . . , Pm and a single base
station. Node Pi has to transfer data of size αi directly to the base station, possibly
inmany separatemessages. Only one node can communicatewith the base station
at a time. We assume the linear model of communication, i.e., communication
capabilities of node Pi are characterized by a single parameter called communica-
tion rate (inverse of speed). Thus, if node Pi communicates with rate C, then it
transfers data of size x in time Cx. According to the methodology of divisible load
theory [8], we assume that data size x is a rational number.

It is assumed that the communication rate of a link between node Pi and the base
station changes in negligible time, when another application starts using it, and
then remains constant for some period of time. In other words, it is a piecewise
constant function of time. Let t0 = 0 be the time when data gathering starts. The
communication rates change at nmoments tj > 0, 1 ≤ j ≤ n, t1 < t2 < · · · < tn

* Speaker, email: Joanna.Berlinska@amu.edu.pl
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and tn+1 = ∞. The communication rate of node Pi in interval [tj, tj+1) will be
denoted by Ci,j for j = 0, 1, . . . , n.
Problem DG-VS (scheduling data gathering with variable communication speed)
consists in scheduling the communications between the nodes P1, P2, . . . , Pm and
the base station so that the whole data is transferred in the shortest possible timeT.

3 Offline algorithm

Theorem 1. The offline version of DG-VS can be solved in polynomial time.

Proof. Suppose that T ∈ [tk, tk+1) for given k ∈ {0, 1, . . . , n}. Then, T can be
found by solving the following linear program:

minimize T (1)
k∑

j=0
xi,j = αi for i = 1, 2, . . . ,m (2)

m∑
i=1

Ci,jxi,j ≤ tj+1 − tj for j = 0, 1, . . . , k− 1 (3)

m∑
i=1

Ci,kxi,k ≤ T− tk (4)

In the above program, xi,j (1 ≤ i ≤ m, 0 ≤ j ≤ k) are rational variables repre-
senting the amount of data sent by node Pi in interval [tj, tj+1). We minimize the
data gathering completion time T. By constraints (2) each node transfers all its
data to the base station. Inequalities (3) and (4) guarantee that the communica-
tions fit in the time intervals where they are assigned. Linear program (1)-(4) has
m(k + 1) + 1 = O(mn) variables and m + k + 1 = O(m + n) constraints, and
hence it can be solved in polynomial time.

In order to solve DG-VS one can use binary search to find the smallest k for which
program (1)-(4) has a solution. The number of binary search iterations isO(log n).
The optimum communication schedule can be obtained from the values of vari-
ables xi,j. Namely, in each interval [tj, tj+1) we schedule consecutively commu-
nications from nodes P1, P2, . . . , Pm of sizes x1,j, x2,j, . . . , xm,j correspondingly,
starting at time tj. Thus, problem DG-VS can be solved in polynomial time.
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4 Online algorithm

Let us assume that although we do not know the exact ranges of communica-
tion speeds changes, the relative range of communication rate changes is known.
Namely, if Cmax

i and Cmin
i are the maximum and the minimum communication

rate of node Pi, then
Cmax
i

Cmin
i

≤ Δ for some given Δ > 1. Such a situation may arise,
e.g., when using a network with QoS Percentage-Based Policing [10].

Observation 1. Any online scheduling strategy for DG-VSwhich does not introduce
idle times in communication is Δ-competitive, since no communication can be more
than Δ times slower than in the optimum schedule.

Observation 2. If no additional information is given, no online algorithmA consist-
ing in reacting to changing communication speeds can be better than Δ-competitive.

Proof. Let m = 2, α1 = α2 = 1, C1,0 = C2,0 = 1. We can assume without loss
of generality that the first sender chosen by algorithm A is P1. Now, let t1 = 1,
C1,1 =

1
Δ , C2,1 = Δ. The schedule length T = 1+Δ obtained by algorithm A is Δ

times larger than the optimum schedule length T∗ = 1+ 1
Δ .

Since byObservations 1 and 2 it is not possible to construct a better than trivial on-
line algorithm without additional knowledge, let us now assume that the network
is homogeneous, i.e. αi = α, Cmin

i = Cmin and Cmax
i = Cmax for all i.

Theorem2. There exists a 1+(m−1)Δ2

1+(m−1)Δ -competitive online algorithm solving problem
DG-VS for a homogeneous network.

Proof. Consider algorithm A that always chooses as the sender the node with the
smallest current communication rate. Let S denote the schedule of length T con-
structed by A and let S∗ be the optimum schedule of length T∗. Let Pi be the
last sender in schedule S . The total length of intervals when Pi transfers data in
schedule S∗ will be denoted by T∗

i . Let T∗
other = T∗−T∗

i . Note that it is possible to
send data from Pi in schedule S , whenever Pi sends data in schedule S∗. Hence,
in the corresponding time intervals the communication in S is not slower than
in S∗ and the size of sent data is at least α. The remaining data, of size at most
(m− 1)α, are sent in S in time at most ΔT∗

other. Thus,

T ≤ T∗
i + ΔT∗

other. (5)

Furthermore, we have T∗
other ≤ (m − 1)ΔT∗

i , and since T∗
i + T∗

other = T∗, we get
T∗
other ≤

T∗(m−1)Δ
1+(m−1)Δ .Hence, we obtain from (5) that T

T∗ ≤ 1+(m−1)Δ2

1+(m−1)Δ .
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5 Future research

In this work, we analyzed minimizing data gathering time in a network with vari-
able communication speed. We proposed a polynomial-time offline algorithm
solving problem DG-VS and a 1+(m−1)Δ2

1+(m−1)Δ -competitive polynomial-time online al-
gorithm solvingDG-VS in a homogeneous network. Future researchmay concern
the construction of non-deterministic online algorithms for DG-VS.
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Solving a time-dependent scheduling problem by interior
point method

Stanisław Gawiejnowicz*
AdamMickiewicz University in Poznań, Poznań, Poland

Wiesław Kurc
AdamMickiewicz University in Poznań, Poznań, Poland
Keywords: single machine, time-dependent scheduling, total completion time,
interior point method

1 Introduction

In many applications one cannot assume that job processing times are known in
advance and fixed. Therefore, in modern scheduling theory an important class of
scheduling problems compose those with variable job processing times. One of
forms of variable processing times is the one in which job processing times are
time-dependent, i.e. depend on when the jobs start, [1]. In this talk, we consider
a single-machine scheduling problem with time-dependent job processing times
that are non-decreasing functions of the job starting times. For this problem, we
propose a new algorithm based on interior point method, [6].

2 Problem formulation

The problem under consideration can be formulated as follows. A set of jobs
J0, J1, . . . , Jn has to be processed on a single machine. All jobs are independent,
non-preemptable and ready for processing at time 0.The processing time pj of Jj
linearly deteriorates in time, i.e. pj = 1 + αjt, where deterioration rate αj > 0
and the job starting time t ≥ 0 for 0 ≤ j ≤ n. The aim is to find a schedule with
minimal total completion time,

∑n
j=1 C[j], whereC[j] denotes the completion time

of the jth job in the schedule. In short, we will call this problem as problem (P).
Notice that any instance of problem (P)may be identified with sequence of job de-
terioration rates α0 = (α0, α1, . . . , αn) which, in turn, corresponds to a schedule
for the problem. Thus, any permutation α = (α[0], α[1], . . . , α[n]) of α0 may also
be identified with a schedule for (P). Therefore, we will use the same symbol for
denoting a permutation of a given sequence of deterioration rates and a schedule
corresponding to the sequence.
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Given α, we can compute job completion times in the schedule corresponding to
this α as follows:

C[0] = 1, C[j] = C[j−1] + p[j](C[j−1]) = 1+ a[j]C[j−1] for 1 ≤ j ≤ n,

where a[j] = 1+ α[j]. Hence, if we denote the sequence of aj’s corresponding to a
given α0 by a0 = (a0, a1, . . . , an), any schedule for (P) may be identified with a
permutation a from the set Perm(a0) of all permutations of a0. (Since further con-
siderations are limited only to elements of Perm(a0), we will omit square brackets
in indices and write j instead of [j].)

3 Related research

Problem (P) has been introduced in [8], where three basic properties of optimal
schedules for (P) have been shown. The maximum job property says that in any
optimal schedule for (P) as the first job is scheduled the job with the maximal
deterioration rate. The symmetry property says that optimal schedules for (P) are
symmetric starting from the second position, i.e. if (α0, α1, . . . , αn) is an optimal
schedule, then (α0, αn, . . . , α1) is optimal as well. Finally, the V-shape property
states that if α is an optimal schedule for problem (P), then for some 0 ≤ m ≤ n
it is non-increasing for 0 ≤ j ≤ m and non-decreasing form ≤ j ≤ n.
The time complexity of problem (P) is still unknown. We conjecture that it is
NP-hard in the ordinary sense. Properties presented in [8] decrease the number
of possibly optimal schedules for (P) from O(n!) to O(2n) establishing an upper
bound on the complexity. Recently, a stronger necessary condition of optimality
for (P), improving the latter bound by factor O( 1√

n), has been shown in [2].

There are also known some algorithmic results for (P). In [4] have been proposed
for (P) two greedy algorithms, based on properties of some functions of deteriora-
tion rates called signatures. Another algorithm for the problemhas been proposed
in [7]. Finally, in [5] and [9] have been proposed for (P) two fully polynomial-
time approximation schemes (FPTASes).

4 Our results

Our approach to solving problem (P), in preliminary form presented in [3], can
be described as follows. LetC(a) be the vector of job completion times,A(a) be an
n×n square matrix with 1′s on the main diagonal, components aj = 1+αj of the
sequence a multiplied by −1 below the main diagonal and equal to 0 otherwise,
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and d = (1, 1, . . . , 1)⊺. Then, an equivalent formulation of problem (P) is as
follows:

min WP(a) = ∥C(a)∥1 subject to A(a)C(a) = d,
where the minimization ofWP(a) is taken over all a ∈ Perm(a0).
Since any optimal solution to (P) must be a V-shaped sequence, we consider the
polyhedron of all 2n such V-sequences for a given a0. Next, we attach to each ver-
tex of this polyhedron a permutation matrix of a special kind and consider the
convex hull of such permutation matrices, which coincides with n-dimensional
polyhedron of all doubly stochastic matrices of a special kind. This convex polyhe-
dron, in turn, we use in a new formulation of problem (P), to which we apply the
primal-dual interior point method, [10].
In order to make our variant of interior point method more computationally ef-
ficient, we propose to replace in the interior point method the Newton method
by an another method, preserving the same size of matrices but without using
theHessian inverse. We also propose a further reduction of memory usage by the
using of a steepest descent method to the goal function with the barrier and the
barrier and penalty components added, respectively.

5 Future research

Our method is a new approach to solving problem (P). However, though pre-
liminary experiments show that it works quite well in practice, provided a good
starting point has been selected, some further refinements such as decreasing the
cost of numerical inversion of some matrices or coping with the size of Hessian
used in computations are needed.
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1 Introduction

The goal in standard scheduling problems is to find the job schedule that min-
imizes a certain measure. In scheduling and due-date assignment problems, an
additional objective is to find the optimal due-dates (see, e.g., Gordon et al. [3]).
Scheduling literature contains three main categories of due-date assignment prob-
lems: (1) the setting that all the jobs share a common due-date (denoted by CON),
(2) the case when due-dates are assigned to jobs as a (mostly linear) function
of their processing times (denoted by SLK), (3) the case when due-dates are de-
termined by penalties for exceeding pre-specified deadlines (denoted by DIF).
In this talk, we focus our attention on the latter model.

2 Related research

The DIF model was introduced by Seidmann et al. [6]. Their model is based
on the assumption that there are specific ”lead times that customers consider to
be reasonable and expected” [6, p. 394]. As a result, a due-date that exceeds its
acceptable lead-time is penalized. Several extensions of the basic DIF model have
been published. Shabtay and Steiner [8] considered the case of job-dependent lead-
times. Shabtay and Steiner [9, 10] and Leyvand et al. [4] studied the DIF model
with controllable job processing times. Wang et al. [11] focused on a model with a
learning effect and deteriorating jobs. Finally, Mor et al. [5] studied the minmax
version of DIF, which is the setting studied in this talk.
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In the above papers, with the exception ofWang et al. [11], one assumes constant,
i.e., position-independent job processing times. However, in many applications
this classical assumption is not valid. Phenomena like learning, where processing
times decrease when jobs are delayed, or aging/deterioration, when processing
times increase as a function of the job position or time, are common examples.

3 Our results

The main extension of the DIF model proposed in this talk concerns general
position-dependent processing times. In particular, unlike most previously
published studies, we do not restrict the job processing times to follow any given
function, or even to be monotone, i.e., to reflect learning or aging. To the best
of our knowledge, there are no published studies combining the DIF model and
general position-dependent processing times.

We extend the DIF model in two directions. First, we extend the DIF model, with
general position-dependent job processing times, to a setting of a Due-Window
for acceptable Lead-times that we denote as DWL. The underlying assumption of
DWL is that a time interval exists, such that due-dates assigned to bewithin this in-
terval are not penalized. The additional lower bound on the acceptable lead-time
reflects, e.g., the time needed by the customer for preparation of storage space.
A due-date assigned to be prior to this lower bound is not acceptable by the cus-
tomer, and a cost for an early due-date is incurred. The most relevant references
for this extension are Gerstl and Mosheiov [1, 2], who recently studied the min-
max and minsum versions of DWL with position-independent processing times.

The second extension of DIF considered here is a setting allowing job rejection.
Indeed, as indicated by a number of researchers in the last decade, in many real-
life situations the scheduler may decide to process only a subset of jobs. Each
unprocessed (”rejected”) job incurs a job-dependent penalty, and the total cost of
the rejected jobs becomes a factor in the objective function. We refer the reader
to the survey paper on scheduling with job rejection by Shabtay et al. [7].

The extension ofDIF to the setting of general position-dependent processing times
is shownhere to be solved in polynomial time by solving a single linear assignment
problem. The extension of DIF to the setting of DWL with position-dependent
processing times is shown to remain polynomially solvable. Finally, the prob-
lem of DIF with job rejection is proved to be NP-hard. An efficient pseudo-
polynomial dynamic programming algorithm is introduced, proving that this
extension isNP-hard in the ordinary sense. Numerical tests we conducted show
that this algorithm is extremely efficient, and instances with hundreds of jobs are
solved in a few seconds.
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1 Introduction

In our talk, we consider two basic variants of scheduling multiprocessor jobs. We
are given a set of parallel jobs, each one specified by its release date, deadline and
processing volume, and a set of speed-scalable processors. In the first variant, the
processing of job j simultaneously requires precisely sizej processors. In the sec-
ond variant, the execution of job j simultaneously needs a prespecified subset fixj
of dedicated processors. Note that the parallel execution of parts of the same job is
not allowed. Moreover, the execution of each job can be interrupted and resumed
without incurring any cost or delay. According to definitions given in literature
on scheduling theory, we consider rigid jobs and single mode multiprocessor tasks
(jobs), respectively [7].
We consider the standard model of speed-scaling, in which if a processor runs at
speed s, then the energy consumption is sα units of energy per time unit, where
α > 1 is a constant. We assume that if processors execute the same job simultane-
ously, then all these processors run at the same speed. Each job has to execute a
work volume w and since processors may change their speed, a job may be com-
pleted faster (or slower) compared to the timewneeded for its execution at speed 1.
The goal is to find a feasible schedule respecting the release dates and deadlines of
all jobs such that the total energy consumption is minimized. We will denote the
speed scaling problem with rigid jobs by Π1 and the speed scaling problem with
single mode multiprocessor jobs by Π2.

2 Related research

For the preemptive single-processor case, Yao et al. [9] proposed an optimal al-
gorithm for finding a feasible schedule with minimum energy consumption. The
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case when there are availablem parallel processors and single-processor jobs has
been solved optimally in polynomial time, provided that the preemption and the
migration of jobs are allowed [1, 3, 5]. We note that the migration of jobs is equiv-
alent to the possibility to execute a parallel job in different modes.

Albers et al. [2] considered the problem on parallel processors in the case when
the preemption of the jobs is allowed but not theirmigration. They proved that it is
solvable in polynomial time for instances with agreeable deadlines and unit-work
jobs. For general instances with unit-work jobs, they proved that the problem
becomes strongly NP-hard and proposed an (αα24α)-approximation algorithm.
For the case where the jobs have arbitrary works, the problem was proved to be
NP-hard even for instances with common release dates and common deadlines.

Albers et al. [1] proposed a 2(2− 1
m)

α-approximation algorithm for instances with
common release dates, or common deadlines, and an (αα24α)-approximation al-
gorithm for instances with agreeable deadlines. Greiner et al. [8] gave a generic
reduction transforming an optimal schedule for the problem on parallel proces-
sors with migration to a B⌈α⌉-approximate solution for the problem on parallel
processors with preemptions but without migration, where B⌈α⌉ is the ⌈α⌉-th Bell
number. (The latter result holds only for α ≤ m.) Cohen-Addad et al. [6] showed
that the problem without migration is APX -hard, even for jobs with common
release date, common deadline and work volumes possess the values 1, 3 or 4.

Bampis et al. [4] studied the heterogeneous preemptive problem on parallel pro-
cessors where every processor i has a different speed-to-power function, sα(i), and
both the life interval and the work of jobs are processor-dependent. For themigra-
tory variant, they proposed an algorithm returning a solution within an additive
factor of ε far from the optimal solution. The algorithm runs in time polyno-
mial to the size of the instance and to 1

ε . For the non-migratory variant, Bampis
et al. [4] presented an (1+ ε)αB̃α-approximation algorithm, where B̃α is the α-th
generalized Bell number.
To the best of our knowledge, no one considered the speed scaling scheduling of
parallel jobs. Formore information on scheduling problems with parallel jobs, we
refer the reader to the survey book by Drozdowski [7].

3 Our results

We present two algorithms for problems Π1 and Π2.We first formulate the prob-
lems as a linear programming (LP) configuration with an exponential number of
variables and a polynomial number of constraints. Surprisingly, we use the same
LP configuration for both problems. First, we prove that for any ε > 0 there is
a feasible solution of the LP with energy consumption at most OPT + ε, where
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OPT is an optimal solution of the original problem. Then, we consider the dual
LP and we show how to use the ellipsoid algorithm to it and obtain an optimal so-
lution for the primal LP. For this purpose, we provide two separation oracles, one
for the problem Π1 and one for Π2, i.e. we present two algorithms which given a
solution for the dual LP decides if this solution is feasible or otherwise it identi-
fies a violated constraint. More precisely, we get the following results. Given an
instance of Π1 with m processors, we can solve the separation problem for Π1 in
time polynomial in m, 1

ε and size of the instance. Thus, we have a polynomial
time algorithm if m is fixed, and a pseudo-polynomial time algorithm if m is a
part of the input. Given an instance of Π2 with |fixj| = 2 for all jobs, we can solve
the separation problem for Π2 in time polynomial in 1

ε and size of the instance.
As we can compute an optimal solution for the dual LP, we can also find an opti-
mal solution for the primal LP by solving it with the variables corresponding to
the constraints that were found to be violated during the run of the ellipsoid algo-
rithm and setting all other primal variables to zero. Our two main results can be
formulated as follows.

Theorem 1. A schedule for the speed scaling problem with rigid jobs of energy con-
sumption OPT+ ε can be found in time polynomial in m, 1

ε and size of the instance.
Recall that if the number of processors used by a job is chosen by the scheduler,
and it can be changed at runtime, then such a job is called amalleable job [7]. Our
algorithm can be generalized for the speed scaling problem with malleable jobs.

Theorem2. A schedule for the speed scaling problemwith singlemode two-processor
jobs of energy consumption OPT+ ε can be found in time polynomial in 1

ε and size
of the instance.
In our talk, we assume that a continuous spectrum of processor speeds is available.
If only a finite set of discrete speed levels is available, then our algorithm finds
an optimal solution. The complexity status of both problems with continuous
spectrum of speed is open.

We also prove ordinaryNP-hardness of Π1, when the number of processors is a
part of the input and strongNP-hardness of Π2, when |fixj| = 3 for all jobs.
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1 Introduction

This presentation is motivated by the problems of workforce planning in the pro-
duction of vehicle engines on a transfer line, see Battaïa et al. [1].

There is given a paced transfer line withm stations on which vehicle parts of a set
P = {1, 2, . . . , k} are manufactured. Each part visits the stations in the same
order 1, 2, . . . ,m and fully occupies any station in the time period between its
arrival and departure. With a time step C called cycle time, a part on station i de-
parts from this station and immediately arrives to station i+1, i = 1, 2, . . . ,m−1,
a new part arrives to station 1 and the part at station m leaves the line. Activities
taking place between two successive part moves are called (production) cycle. If
part j is handled on station i in a cycle, then the duration of all operations on this
part at this station in this cycle is a non-increasing function pij(xij) of the number
of identical workers xij assigned to station i and part j in this cycle. Workers as-
signed to different stations perform their operations in parallel. They do notmove
from one station to another in the same cycle, however, they can move instantly
to another station after the cycle has been finished. To be feasible with respect to
the cycle time, relation pij(xij) ≤ Cmust be satisfied for each station and each part
in each cycle. Besides, technological constraints define lower and upper bounds
on the values xij in each cycle: aij ≤ xij ≤ bij, i = 1, 2, . . . ,m, j ∈ P.
A requirement of the global supply chain is that the production keeps a given
proportion of the manufactured parts. To address this issue, the notion of aMin-
imal Part Set (MPS) is used. Let the part proportion be given by the numbers
w1,w2, . . . ,wk, wherewj is the percent of parts j to bemanufactured, and letGCD
denote the greatest common divisor of the numbersw1,w2, . . . ,wk. Let us denote
oj =

wj
GCD , where j ∈ P and n =

∑k
j=1 oj. MPS is the multiset that consists of oj

copies of each part j, j ∈ P.

* Speaker, email: kovalyov_my@newman.bas-net.by

45



An MPS sequence is a part sequence π = (j1, j2, . . . , jn), jr ∈ P, r = 1, 2, . . . , n,
in which each part j occurs oj times, j ∈ P. According to the MPS sequence π,
the parts visit the line cyclically in the order j1, j2, . . . , jn, j1, j2, . . . , jn, . . . In each
cycle, each station is assigned a part and this arrangement can be represented by
a sequence σ = (j′1, j′2, . . . , j′m), where j′h ∈ P is the part assigned to station h =
1, 2, . . . ,m. We call such an arrangement a Station-Part matching (SP-matching).
There is a 1-1 correspondence between distinct cycles and distinct SP-matchings.

GivenMPS sequence π = (j1, j2, . . . , jn), let’s consider a digraph G(π)with the set
of nodes {j1, j2, . . . , jn} and the set of arcs {(j1, j2), (j2, j3), . . . , (jn−1, jn), (jn, j1)}.
Thus, G(π) is the graph called cycle. We say that an SP-matching σ is π-feasible, if
and only if it is a path in the graph G(π), with possible node repetition if m > n.
For example, ifm = n+ 1, then σ = (j2, j3, . . . , j1, j2) is π-feasible, and, ifm = 3,
then σ = (j6, j7, j8) is π-feasible. Let Φ(π) denote the set of all π-feasible SP-
matchings. We have |Φ(π)| = n. Further, let x(σ)i denote the number of workers
assigned to station i in the cycle defined by the SP-matching σ, i = 1, 2, . . . ,m.
The total number of workers used in this cycle is equal to

∑m
i=1 x

(σ)
i . Denote by x

the structure with the entries x(σ)i , i = 1, 2, . . . ,m, σ ∈ Φ(π). The total number of
workers used in the long run of the MPS sequence π = (j1, j2, . . . , jn) is equal to
T(π, x) = maxσ∈Φ(π){

∑m
i=1 x

(σ)
i }. The problem is to determine anMPS sequence

π and the number of workers assigned to each station in each cycle, determined
by the structure x, such that the maximum of the total number of workers over all
cycles, T(π, x), is minimized. We denote this problem as MinMaxSum.

2 Related research

ProblemMinMaxSumhasmuch in commonwith the problem studied by Lee and
Vairaktarakis [2]. However, there are two differences. Firstly, the authors assume
that the MPS sequence is not repeated cyclically: the line is free before the first
part of anMPS sequence arrives to the first station and the production stops when
the last part of this sequence departs from the last station. Secondly, they assume
that the workforce requirements are fixed, that is, aij = bij, i = 1, 2, . . . ,m, j ∈ P,
in our notation. We denote the problem in [2] as Fix. Lee and Vairaktarakis
proved that this problem is solvable in O(n log n) time if m = 2, it is NP-hard
in the strong sense if m = 3, and they suggested an integer linear programming
formulation, lower bounds and heuristics.

ProblemMinMaxSumwith station independent workforce requirements belongs
to the class of Minmaxsum Traveling Salesman Problems (TSPs), which includes
BottleneckTSP, intersects with TSPunderCategorization, and it is relevant
to the k-Neighbor TSP and Maximum Scatter TSP.
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We show that MinMaxSum is equivalent to the same problem without the cycle
time constraints pij(xij) ≤ C and with aij = bij = wij for appropriately defined
fixed workforce requirements wij, i = 1, 2, . . . ,m, j ∈ P, propose a brute force
algorithm for this problem, prove strongNP-hardness for the case ofm = 3 and
for the case ofm = 4 and station independent workforce requirements (wij = wj,
i = 1, 2, . . . ,m, j ∈ P), and propose an O(k log k) algorithm for the case m = 2
and station independent workforce requirements.

3 Reduction to fixed workforce requirements

Consider an MPS sequence π. Observe that some parts can be missing in an SP-
matching σ ∈ Φ(π), but, for any part, there exists an SP-matching σ ∈ Φ(π),
in which this part is present on any station. This observation implies two state-
ments: 1) the cycle time constraint and the lower and upper bounds on the num-
ber of workers are satisfied if and only if, for each pair (i, j), there exists a num-
ber of workers x such that pij(x) ≤ C and aij ≤ x ≤ bij, and 2) statement 1)
is satisfied, that is, problem MinMaxSum has a solution, if and only if, for each
pair (i, j), the optimal number of workers is fixed to be equal to wij := min{x |
pij(x) ≤ C, aij ≤ x ≤ bij}, assuming that pij(bij) ≤ C for all i and j. If functions
pij(x) are invertible, then wij = max{aij, ⌈p−1

ij (C)⌉}, otherwise, wij can be found
in O(log2(bij − aij)) time by a bisection search over the range [aij, bij]. Thus, in
O(mk log2maxi,j{bij−aij}) time,MinMaxSum reduces to the same problemwith
no cycle time constraints and with the fixed workforce requirements wij, which is
to minimize T(π) = max

{
F(σ) =

∑m
i=1 wi,j′i | σ = (j′1, j′2, . . . , j′m) ∈ Φ(π)

}
.

Assume without loss of generality that o1 = mini=1,2,...,k{oi}. Denote by Π the
set ofMPS sequences, inwhich part 1 is in the first place. Set n̂ = n−1, ô1 = o1−1
and ôi = oi, i = 2, 3, . . . , k. We have

|Π| = Cô1
n̂ · Cô2

n̂−ô1 · · ·C
ôk
ôk =

n̂!
ô1!ô2! · · · ôk!

=
(n− 1)!

(o1 − 1)!o2!o3! · · · ok!
.

MinMaxSum reduces to minimizing T(π) for π ∈ Π. Since |Φ(π)| = n, each
value T(π) can be calculated in O(mn) time. Hence, MinMaxSum can be solved
in O(mn|Π|) = O

(
n!m

(o1−1)!o2!o3!···ok!

)
time.

4 Complexity results

Theorem 1. MinMaxSum isNP-hard in the strong sense for the case m = 3 and
for the case m = 4 and wij = wj for i = 1, 2, . . . ,m and j ∈ P.
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Weuse reductions fromNumerical 3-DimensionalMatching and 3-Partition
for the first and the second mentioned case, respectively.

Letm = 2 andworkforce requirements bewij = wj for i = 1, 2 and j = 1, 2, . . . , k.
Assume that part copies are numbered 1, 2, . . . , n and each part copy r is associ-
ated with workforce requirement w0

r which is equal to the workforce requirement
of its part: w0

r = wj if r is a copy of part j. Number part copies in the Least Work-
force Requirement (LWR) order such that w1 ≤ w2 ≤ · · · ≤ wn. We call sequence
of part copies π = (1, n, 2, n − 1, 3, n − 2, 4, . . .), which includes all n copies,
Up-and-Down sequence.

Theorem2. TheUp-and-Down sequence is optimal forMinMaxSum if m = 2 and
wij = wj for i = 1, 2 and j ∈ P.
The Up-and-Down sequence can be represented using O(k) memory units be-
cause copies of the same part appear consecutively in the LWR order. This concise
representation of the Up-and-Down sequence can be constructed in O(k log k)
time by sorting parts in the non-decreasing order of their workforce requirements
and employing this order in the description of theUp-and-Down sequence of part
copies. Thus, MinMaxSum with m = 2 and wij = wj for i = 1, 2 and j ∈ P can
be solved in O(k log k) time.

5 Future research

In the future, it is interesting to establish computational complexity of the open
cases of MinMaxSum with fixed parameters m and/or k, and general or station
independent workforce requirements. ILP formulations and (meta)heuristics for
the general case are of a practical interest.
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1 Introduction

The aim of this talk is to present some preliminary results on scheduling jobs with
variable processing times onmachines endowed by a partial order. In other words,
we consider scheduling problems in which the directed chain of machines typi-
cal for such machine systems as flow shop is replaced by a more general directed
set. We illustrate the idea by an example in which available machines compose a
directed tree. Applying a matrix approach [1], equivalent toMöbius inversing for-
mula over incidence algebra [2], we formulate two results concerning scheduling
linearly deteriorating jobs on suchmachine systemswith the objective tominimize
the total weighted completion time or the maximum completion time.

2 Problem formulation

We consider the following problem. The set J of n+ 2 jobs has to be processed on
the setM ofm+2machines. Jobs are divided into real jobs and artificial jobs. The
processing time of real job Ji ∈ J varies according to the function pi(t) = bi + αit,
where t denotes the starting time of the job, bi ≥ 0 and αi ≥ −1 for 1 ≤ i ≤ n.
The processing time of artificial job J0 is fixed, p0(t) = b0. Artificial job Jn+1 has
no processing time and its meaning is to simplify the problem formulation. To
each job Ji ∈ J, excluding artificial job J0, there is defined weight ωi+1, indicating
the significance of the completion timeCi of job Ji from the perspective of job Ji+1.

Jobs J1, J2, . . . , Jn are processed on real machines M1,M2, . . . ,Mn, while artificial
jobs J0 and Jn+1 are processed on artificial machines M0 and Mn+1, respectively.
On machines M0,M1, . . . ,Mn+1 there is defined a partial order and all of them
are available for processing from time C0 ≥ 0.
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Since jobs J1, J2, . . . , Jn are fully characterized by n triplets σi = (bi, ai,ωi), fol-
lowing [1] we use the table

σ = (σ0, σ1, . . . , σn+1) =

 b0 b1 b2 bn −
− a1 a2 an −
− ω1 ω2 ωn ωn+1


in which triplets σ0 = (b0,−,−) and σn+1 = (−,−,ωn+1) correspond to artifi-
cial jobs J0 and Jn+1, respectively. (Since any such a table corresponds to a non-
delay schedule, we will denote the table and the schedule by the same symbol.)

Given C0 and σ, job completion times are equal to

C1(σ) = C0 + p1(C0) = b1 + a1C0

and

Ci(σ) = bi + aiCi−1(σ),

where Ci(σ) denotes the completion time of job Ji in schedule σ, C0(σ) ≡ C0,
ai = 1 + αi and 1 ≤ i ≤ n. The aim is to find a schedule σ minimizing the total
weighted completion time,

∑n
i=0 ωi+1Ci(σ), or the maximum completion time,

max{Ci(σ) : 1 ≤ i ≤ n}.
The above problem can be concisely formulated in a matrix form. Let σ◦ and
Perm(σ◦) denote the table corresponding to the initial order of jobs given in in-
put instance and the set of all permutations of the triplets σ1, σ2, . . . , σn in σ◦,
respectively. Then, the problem under consideration is equivalent to

minω⊺C(σ) =
∑n

i=0 ωi+1Ci subject to A(σ)C(σ) = b,
where σ ∈ Perm(σ◦), [1].
In order to illustrate our ideas, let us consider the following example. Denote by
M = {Mi,Ms,Mj,Mk,Ml,Mm} the set of machines endowed with the partial
orderMi ⪯ Mk ⪯ Ml ⪯ Mm,Mj ⪯ Mk, andMs ⪯ Ml. In other words,M forms
a directed tree with the root atMm and three leavesMi,Mj andMs.The table σ◦
of triplets describing jobs is in the form of

σ◦ =

 bi bs bj bk bl bm −
− − − ak al am −
− − − ωk ωl ωm ωn

 .

Then Ci(σ◦) = bi,Cs(σ◦) = bs,Cj(σ◦) = bj andCk(σ◦) = Ci(σ◦)+pk(Ci(σ◦))+
Cj(σ◦) + pk(Cj(σ◦)) = akCi(σ◦) + bk + akCj(σ◦) + bk, Cl(σ◦) = Ck(σ◦) +
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pl(Ck(σ◦)) + Cs(σ◦) + pl(Cs(σ◦)) = alCk(σ◦) + bl + alCs(σ◦) + bl and, finally,
Cm(σ◦) = amCl(σ◦) + bm.
Matrix equation A(σ◦)C(σ◦) = b is in the form of

1
1

1
−ak −ak 1

−al −al 1
−am 1





Ci
Cs
Cj
Ck
Cl
Cm

 =



bi
bs
bj
2bk
2bl
bm

 .

Hence, C(σ◦) = A−1(σ◦)b with lower triangular matrix A−1(σ◦). Therefore,

ω⊺C(σ◦) = biωi + bjωj +
(
ak

(
bi + bj

)
+ 2bk

)
ωk+

+
(
akal

(
bi + bj

)
+ 2bl + al (2bk + bs)

)
ωl+

+
(
akalam

(
bi + bj

)
+ 2ambl + bm + alam (2bk + bs)

)
ωm + bsωs,

since

C(σ◦) =



bi
bs
bj
akbi + akbj + 2bk
akalbi + akalbj + 2albk + 2bl + albs
akalambi + akalambj + 2alambk + 2ambl + bm + alambs

 .

Job completion times can be computed in a few different ways. If we assume, as
above, that in a schedule σ the processing at node k applies the same function
pk(t) to job completion times Ci(σ), Cj(σ) from the previous stage, then Ck(σ) =
(Ci(σ) + pk(Ci(σ))) △ (Cj(σ) + pk(Cj(σ))), where △≡ +. Alternatively, one can
assume that△≡ max. Finally, we can assume thatCk(σ) = (Ci(σ)+pi(Ci(σ))) △
(Cj(σ) + pj(Cj(σ))) = aiCi(σ) + ajCj(σ) + bi + bj, where △≡ +. In the latter
case, the objective function becomes ω⊺C(σ) = ωkCi(σ) + ωlCs(σ) + ωkCj(σ) +
ωlCk(σ) + ωmCl(σ) + ωnCm(σ).

3 Our results

Ourmain results are based on twoobservations. First, notice thatC(σ) = A−1(σ)b
is a form ofMöbius inversing formula ([2]) over incidence algebraA(M) of all real-
valued functions f over M × M such that f(Mi,Mj) = 0 unless Mi ⪯ Mj, where
⪯ is a partial order in M. Second, notice that the incidence algebras give us the
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mathematical background for time-dependent scheduling onmachines related by
the partial order ⪯. For instance, from [2] it follows that A−1(σ) exists and is a
triangular matrix for any partial order onM.

Keeping in mind the observations, our two main results can be stated as follows.

Theorem 1. Let M be the set of n machines endowed with partial order ⪯ such
that M is a directed set. Let J be the set of n jobs described by the table σ with
ωi = bi = 1 for 0 ≤ i ≤ n + 1, respectively. Moreover, let σ∗ ∈ Perm(σ◦) be an
optimal schedule for problem (P) with the

∑
ωj+1Cj criterion. Then elements ai of

σ∗ considered along any chain connecting beginning and final elements in M must
be V-shaped.

Theorem 2. Let assumptions of Theorem 1 be satisfied and let σ∗ ∈ Perm(σ◦) be
an optimal schedule for problem (P)with the Cmax criterion. Then the elements ai of
σ∗ considered along any chain connecting beginning and final elements in M must
be non-decreasing.

4 Future research

In future research we want to extend our ideas to the case of other forms of job
processing times and machine precedence constraints.
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1 Introduction

In this talk, we introduce a scheduling problem with a new variant of resource
constraints. The new resource constraints are generalizations of renewable and
non-renewable resources in the sense that a task when completed will release the
resource it has acquired for processing, allowing the amount of released resource
to be smaller than, equal to or even larger than the amount of the previously ac-
quired resource. Moreover, in order to release the resource back to the common
pool, a recycling operationmust be performed. When the amount of the resource
is sufficient, some of the recycling operations can be bypassed. The problem is to
find a feasible schedule that attains the minimummakespan.

2 Problem formulation

The problem under consideration is formally defined as follows. A set of n jobs
N = {1, 2, . . . , n} is to be processed on a single machine. Each job j ∈ N is
characterized by four non-negative integral parameters: (1) resource requirement
aj that is an amount of the resource required to commence the processing of job j,
(2) processing time pj that is the processing time of the regular operation of job j,
(3) resource yield bj that is an amount of the resource that may be returned by job
j when it is completed, (4) resource recycling time qj that is the time required for
recycling the bj units of the resource. A common pool of v0 units of a single-type
resource is given for processing the jobs ofN. Job j requires and consumes aj units
of the resource from the resource pool to commence its processing.

Upon its completion, we either perform its recycling operation, taking qj units of
time, or directly proceed to the processing of other jobs. If the recycling operation
is carried out, then bj units of the resource will be produced and deposited into
the common pool. The decision consists of two parts: (1) selecting a subset of re-
cycling operations to be performed, and (2) determining a sequence of all regular
operations and the selected recycling operations. The derived sequence should
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be feasible subject to the resource constraints in the sense that in the course of
execution no job is blocked by insufficiency of the resource. The objective is to
minimize the makespan, i.e. the largest completion time of the regular processing
operations. We will denote the problem as 1|aj, bj, recl|Cmax.

3 Related research

The studied problem is a generalization of the relocation problem formulated as
a redevelopment project in the east Boston by Kaplan [2]. Taking into account
the temporal issues along the planning horizon, Kaplan [2] addressed the recon-
struction time lines of the buildings, which allowed to process multiple buildings
in parallel if the available resource permitted this. Kononov and Lin [4, 5] in-
vestigated two other objective functions. The first attempt to introduce recycling
operations was done by Lin and Huang [6]. In this case, a second working crew is
available for performing the recycling operations and the two working crews con-
stitute a two-machine flow shop: the first machine is responsible for demolishing
the buildings, the second one is used for erecting new buildings. Cheng et al. [1]
considered a relocation problem with separate recyclic operations.

4 Our results

We start with the following theorem that links the relocation problem and two-
machine flow shop scheduling F2||Cmax.

Theorem 1. (Kaplan and Amir [3]) Let aj and bj be the machine-one and machine-
two processing times of job j in the F2||Cmax problem. Then, the minimum initial
resource level guaranteeing the feasibility of a sequence in the relocation problem is
equivalent to the total idle time on machine two of the corresponding job sequence
in the F2||Cmax problem.

Lemma 2. Consider the base relocation problem with only negative jobs, i.e., such
that δj = aj − bj < 0 for all j ∈ N. If the initial resource level v0 is sufficient
for guaranteeing the existence of feasible schedules of the jobs in N, then v0 is also
sufficient for any proper subset of N.
Returning to the studied problem, we have the following auxiliary result.

Lemma 3. There is an optimal schedule of 1|aj, bj, recl|Cmax in which (1) the com-
plete jobs precede the partial jobs, (2) the complete jobs are sequenced by Johnson’s
rule, and (3) the partial jobs can be arranged in arbitrary order.
To formulate the studied problem, we define binary variable xj = 1 if the recycling
operation of job j is performed, and xj = 0 otherwise.
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Then, the formulation of the problem as an integer program is as follows:

Minimize
n∑

j=1
xjqj (1)

subject to

v0 +
j−1∑
i=1

xiδi ≥ xjaj, 1 ≤ j ≤ n, (2)

v0 +
n∑

i=1
xiδi ≥

n∑
i=1

ai(1− xi), 1 ≤ j ≤ n, (3)

xj ∈ {0, 1}, 1 ≤ j ≤ n. (4)

The left hand side of constraints (4) and (5) gives the resource levels at the com-
pletion of jobs in certain positions. Constraints (2) ensure the feasibility of each
complete job, and constraints (3) confine the feasibility of the partial jobs.

The problem is NP-hard, since it is a generalization of the Knapsack problem.
However, it still allows the development of pseudo-polynomial algorithm by dy-
namic programing (DP). The design of our DP algorithm differs from most of
other ones, in which feasible schedules are constructed by recursion from feasible
partial schedules. Namely, infeasibility in our design is allowed during the con-
struction course of partial schedules. State f(j, τ, η) is defined for the first j jobs,
1, 2, . . . , j, subject to the conditions that the resource level at the completion of
all complete jobs is exactly τ and that the total resource requirement of the partial
jobs is exactly η. Many (partial) schedules may correspond to state f(j, τ, η). De-
fine f(j, τ, η) as the maximum total length of rejected recycling operations among
the schedules corresponding to state (j, τ, η).
Dynamic Programming Algorithm for problem 1|aj, bj, recl|Cmax

Initialization: For j = 0 to n, τ = 0 to v0 +
∑
i∈N+

δi, η = 0 to
∑
i∈N

ai

f(j, τ, η) =
{

0, if j = τ = η = 0;
−∞, otherwise.

Recursion: For j = 0 to n, τ = 0 to v0 +
∑
i∈N+

δi, η = 0 to
∑
i∈N

ai

f(j, τ, η) =

{
max

{
f(j− 1, τ − δj, η), f(j− 1, τ, η − aj) + qj

}
, if τ − δj ≥ aj;

f(j− 1, τ, η − aj) + qj, otherwise.

Goal: Find max
{
f(n, τ, η) : 0 ≤ τ ≤ v0 +

∑
j∈N+ δj, 0 ≤ η ≤ τ

}
.

In recursion, condition τ − δj ≥ aj examines whether or not job j is eligible to
be scheduled as the last complete job. If job j is eligible, we can schedule it either
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complete or partial. The inequality η ≤ τ in the goal function is to ensure the fea-
sibility of the partial jobs in the schedules corresponding to the states defined by n.
The overall computing time is O

(
n(v0 +

∑
j∈N+ δj)

∑
j∈N aj

)
, which is pseudo-

polynomial in terms of the input length, confirming that the 1|aj, bj, recl|Cmax
problem cannot be stronglyNP-hard.
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1 Introduction

Consider the following scenario. After a period of careless spending, a person
finds oneself with a number of loans to repay. Each loan has a known characteris-
tic expressed by due date or interest rate. Fortunately, the person is employed, so
there are a number of known money gains. Now, arises the question: it is possible
to repay all the loans? If it is, how to repay them with the least amount of money?

In this talk, we investigate the following problem. We are given a single processor
and a number of jobs with zero processing times. The execution of each job re-
quires a certain amount of additional, non-renewable resource. This requirement
is time-dependent, i.e., for every job a function of time describes the resource re-
quirement to process the job at the given moment. The resource is obtained in a
number of gains. Each gain is described by the moment the gain occurs and the
amount of resource gained. There is no limited capacity for storing the resource
and it does not deteriorate with time. All information is known in advance. We
start processing at time t0 = 0 and with no resource.

This problem models the mentioned above situation in the following way. We
(the processor) are facing a number of debts to repay (the jobs). Usually, the num-
ber of bank transfers that we can issue at any time is not a limiting factor, so com-
pleting such jobs requires virtually no time. On the other hand, enough cash, i.e.
resource, is needed to make payments. Finally, the income, i.e. resource gains,
increases cash reserves at specified moments.
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2 Problem formulation

There is given one processor and n jobs J = {J1, J2, . . . , Jn} with zero process-
ing times. The completion of each job requires consuming a given amount of an
additional resource, described by function

gi(si) =

{
ai, if si ≤ di,
ai + bi, otherwise,

where si is a job’s starting time and ai ∈ Z+, bi ∈ Z+ for i = 1, 2, . . . , n.
Each job is completed immediately after being started, i.e., si = Ci for every
job. The amount of available resource is 0 at the schedule’s start and increases
in moments ti by Gi ∈ Z+ for i = 1, 2, . . . k and t1 < t2 < . . . < tk. The
goal is to check whether there exists a feasible schedule such that all jobs are
completed. Denote the problem by 1|NR,ZET, gi ∈ {ai, ai + bi} |−. This prob-
lem answers the question whether one is able to repay all loans, when missing
a due date results in a one-time penalty. We will also extend the above prob-
lem to 1|NR,ZET, gi ∈ {ai, ai + bi} |

∑
gj, where the

∑
gj denotes the criterion

of minimizing the total amount of resource spent to complete all jobs. This, in
turn, can be understood as the minimization of the total cost of repaying all loans.
Finally, we substitute the step debt growth rate with linear one, obtaining resource
requirement function in the form of

gi(si) = ai + bisi.

Again, the goal is to answer whether there exists a feasible schedule such that all
jobs are completed. We denote the problem by 1|NR,ZET, gi = ai + bisi|−. This
model relates to the case when interest rates are enlarging the debt every month.

3 Related research

The problems with non-renewable resources are sometimes referred to as financial
scheduling, since the resources often represent the amounts of available money,
fuel or other valuable (and thus limited) commodities. Such problems received
some attention in the last years fromboth theoretical (see [1, 2] for numerous com-
plexity results) and practical point of view (pseudo-polynomial algorithms and
approximation schemes [4, 5]). Time dependent resources in different context
were considered in [3], where resources are renewable but the available amounts
change with time. In other models, available non-renewable resource is used to
decrease processing time of time-dependent jobs, [6].
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4 Our results

Theorem 1. The problem 1|NR,ZET, gi ∈ {ai, ai + bi} |− isNP-complete.

Proof. We proceed by a reduction from the Subset Sum problem, in short SS:
there is given a sequence Z = {z1, z2, . . . , zn}, where zi ∈ Z+ for 1 ≤ i ≤ n
and a number S; is there a subset Z′ ⊂ Z such that

∑
zj∈Z′ zj = S? For a given

instance I of SS, we build an instance I′ of 1|NR,ZET, gi ∈ {ai, ai + bi} |− as
follows: ai = bi = zi, di = 2 for every item zi in the SS problem, k = 2, t1 = 1,
G1 = S, t2 = 3, G2 = 2(

∑n
i=1 zi − S). If there exists a positive answer to I, then

one can schedule jobs corresponding to elements in the Z′ set at the moment 1
and the remaining jobs at the moment 3. On the other hand, I′ has a positive
answer only if jobs scheduled up to the moment 2 will consume exactly S units of
the resource, which means that there exists also a positive answer to I.

For solving this problem, we will employ a dynamic programming algorithm.
Without loss of generality, we can reorder all jobs such that d1 ≤ d2 ≤ . . . ≤ dn.
If two jobs have the same due date, we put them in arbitrary order. Let D[i, P] be
equal to the smallest amount of resource that must be spent to complete in time
jobs from the set Zi = {J1, J2, . . . , Ji} up to the moment di, while gathering total
penalty equal to P =

∑
j∈ZPi bj, where ZPi is a subset of Zi containing the penal-

ized jobs. If a given value of P cannot be obtained, we set D[i, P] = +∞. Clearly,
D[0, 0] = 0, D[i, 0] =

∑
j=1,2,...,i aj and D[0, p] = +∞ for p > 0. We will call the

algorithm as Algorithm PP.

Lemma 2. Let Si be the total amount of resources available at the moment di, i.e.
Si =

∑
j:tj≤di Gj. Then

D[i+ 1, P] = min


ai+1 + D[i, P], if ai+1 ≤ Si+1,

D[i, P− bi+1], if P ≥ bi+1,

+∞ otherwise.
(1)

In view of Lemma 2, all we need to do is to find the smallest p ∈ {0, 1, . . . , P}
such that D[n, p] < +∞ and

∑n
i=1 ai + p ≤ Sn, where P =

∑n
i=1 bi is the largest

value of attainable penalty.

Lemma 3. Let b > 0, ε > 0. Transform the instance I of our problem, obtaining
instance I′, in such a way that: R = εb

n , n
′ = n, k′ = k, a′i = ai, g′j = gj, d′i = di,

G′
j = Gj, b′i =

⌈
bi
R

⌉
for i = 1, 2, . . . , n, j = 1, . . . , k. Let OPT be the value of the

optimal solution to I. Applying Algorithm PP with I′ and P ≥ OPT, we can either
find (1 + ε)-approximate solution to instance I or ensure that OPT < b.
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On the basis of Lemma 3, one can construct a fully-polynomial approximation
scheme (an FPTAS) for the problem, which iteratively invokesAlgorithmPP. Each
invocationwill either produce the required result orwill decrease the upper bound
for optimal solution value.

Theorem 4. The problem 1|NR,ZET, gi = ai + bisi|− is stronglyNP-complete.
Proof (Sketch). We proceed by a reduction from the 3-Partition problem. For a
given instance I of 3-Partition, we build an instance I′ of 1|NR,ZET, gi = ai +
bisi|− as follows: n = 3m, k = m, ti = i−1,Gi = iS, gj(t) = zj+zjt for 1 ≤ i ≤ m,
1 ≤ j ≤ 3m. If there exists a positive answer to I, then one can schedule jobs
corresponding to elements in the Zi set at the moments i− 1 obtaining a feasible
schedule. On the other hand, there exists a valid schedule only if at everymoment
ti for 1 ≤ i ≤ m jobs consuming exactly iS units of resource are scheduled, i.e.,
there exists a set of three jobs, Ja, Jb and Jc, such that i(za + zb + zc) = iS. □

5 Future research

An interesting question arises what happens to the problem when common (unit)
or arbitrary processing times of jobs are allowed.

References

[1] E. R. Gafarov, A. A. Lazarev, F. Werner, Single machine scheduling problems
with financial resource constraints: Some complexity results and properties,
Mathematical Social Sciences, 62 (2011), 7–13.

[2] E. R. Gafarov, A. A. Lazarev, F. Werner, A note on the paper ”Single machine
scheduling problems with financial resource constraints: Some complexity
results and properties” by E.R. Gafarov et al., Mathematical Social Sciences,
65 (2013), 232.

[3] T. Tautenhahn, G. J. Woeginger, Unit-time scheduling problems with time
dependent resources, Computing, 58 (1997), 97–111.

[4] P. Győrgyi, T. Kis, Aproximation schemes for single machine scheduling
with non-renewable resource constraints, Journal of Scheduling, 17 (2014),
135–144.

[5] P. Győrgyi, T. Kis, Approximability of scheduling problemswith resource con-
suming jobs, Annals of Operations Research, 235 (2015), 319–336.

[6] C-M. Wei, J-B. Wang, P. Ji, Single-machine scheduling with time-and-
resource-dependent processing times, Applied Mathematical Modelling,
36 (2012), 792–798.

60 The First International Workshop on Dynamic Scheduling Problems



Scheduling on identical parallel machines with
controllable processing times to minimize the makespan

Daniel Oron
The University of Sydney Business School, Sydney, Australia

Dvir Shabtay*
Ben-Gurion University of the Negev, Beer Sheva, Israel

George Steiner
McMaster University, Hamilton, Ontario, Canada
Keywords: scheduling, parallel machines, controllable processing times, total
weighted resource consumption, maximum completion time

1 Introduction

Scheduling with controllable processing times has been the focus of extensive
research for the last three decades, see Shabtay and Steiner [5] for a survey.
In contrast to the common assumption in deterministic scheduling saying that
job processing times are constant values, in scheduling with controllable process-
ing times the job durations are controllable through the allocation of resources to
job operations. In this talk, we consider a problem of this type.

2 Problem formulation

We focus on the following scheduling problemwith controllable processing times.
A set of n jobs J = {J1, J2, ..., Jn} has to processed on a set ofm identical machines
M = {M1,M2, ...,Mm} working in parallel. Job preemption is not allowed. The
job processing time, pj(uj), is a convex function of the amount of a non-renewable
resource, uj, that is allocated to the processing operation, i.e., pj(uj) = (

wj
uj )

k,

where wj is a positive parameter representing the workload of job Jj and k is a
positive constant. A solution S for our scheduling problem is defined by a par-
tition τ of set J into m subsets JM1 , JM2 , ..., JMm , where JMi is the set of jobs to
be processed on machine Mi, i = 1, 2, . . . ,m, and by a resource allocation vec-
tor u = (u1, u2, . . . , un). The quality of a solution is measured by two criteria:
the first is the makespan criterion given by

Cmax = max
i=1,2,...,m

∑
Jj∈JMi

pj(uj)

 = max
i=1,2,...,m

∑
Jj∈JMi

(
wj

uj

)k
 (1)
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and the second criterion is the total weighted resource consumption given by

Uv =
n∑

j=1
vjuj, (2)

where vj is the cost of one unit of resource allocated to the processing operation
of job Jj for j = 1, 2, . . . , n. We focus on the following four different problem
variations, whereU andK are given parameters: (P1) finding a solution S = (τ, u)
minimizingCmax+Uv, (P2) finding a solution S = (τ, u)minimizingCmax subject
toUv ≤ U, (P3) finding a solution S = (τ,u)minimizingUv subject to Cmax ≤ K,
(P4) identifying a Pareto-optimal solution for each Pareto-optimal point, where a
solution SwithCmax(S) = K andUv(S) = U is called Pareto-optimal if there does
not exist another solution S′ such that Cmax(S′) ≤ K andUv(S′) ≤ U, with at least
one of these inequalities being strict.

3 Related research

Shabtay and Kaspi [6] studied the special of the (P2) problem variation, where
vj = 1 for j = 1, 2, . . . , n and (i) provided amethod to obtain the optimal resource
allocation for problem (P2) as a function of τ, (ii) use the result in (i) to reduce
this special case of (P2) to a purely combinatorial problem, and (iii) show that
the reduced combinatorial problem is NP-hard when m = 2 by reducing the
Partition problem to it. However, the analysis in [6] has some drawbacks. The
first is that the analysis is restricted to problem (P2) with vj = 1 for j = 1, 2, . . . , n.
The second is that it includes complexity results only for the case where m = 2.
Finally, it does not provide any practical tool to solve the problem. Our aim in this
talk is to bridge these gaps through the analysis of problems (P1)–(P4).

4 Our results

The following lemma presents the optimal resource allocation strategy for (P2) as
a function of partition τ.
Lemma 1. The optimal resource allocation strategy for (P2) as a function of τ is to
assign to any job Jj ∈ JMi

r∗j = vju∗j = (θj)
k

k+1

∑
Jl∈JMi

(θl)
k

k+1

 1
k
U
w′
G

units of resource, where w′
G =

m∑
i=1

∑
Jj∈JMi

(
θj
) k

k+1

 k+1
k

=

m∑
i=1

∑
Jj∈JMi

aj

k′

,

k′ = k+1
k > 1, θj = vjwj and aj =

(
θj
) k

k+1 for j = 1, 2, . . . , n.
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Based on Lemma 1, we show that the minimal makespan value, considered as

a function of τ, can be computed by Cmax(τ, u∗(τ)) =
(
w′
G
U

)k
. Since both U

and k are constant parameters, problem (P2) reduces to the followingWeighted
Workload Partition (WWP) problem: given a set A = {a1, a2, . . . , an} and a
parameter k, find a partition τ of set A intom subsets JM1 , JM2 , . . . , JMm such that

f(τ) = w′
G =

m∑
i=1

∑
Jj∈JMi

aj

k′

(3)

is minimized.

We also show that remaining variations of our problem, i.e., (P1), (P2) and(P4),
reduce to theWWP problem as well, and prove the following complexity result by
a reduction from the 3-Partition problem.

Theorem 2. The decision version of the WWP problem is stronglyNP-complete.
We briefly explain how we can provide a fully-polynomial approximation scheme
(an FPTAS) for solving the WWP problem with a fixed number of machines, re-
gardless of the fact that we could not provide a pseudo-polynomial time algorithm
for this problem, as the states of the corresponding dynamic programming (DP)
algorithm have to include non-integer values, even if the input of the entire in-
stance is restricted to integer values. The fact that an FPTAS can be constructed
follows from the fact that a DP algorithm can be constructed for the scaled and
rounded version of the problem. By using the appropriate scaling parameter, we
can actually ensure that the algorithm runs in polynomial time. Following the
method presented in Ibarra and Kim [2], we scale the aj parameters by a con-
stant K and then round down the resulting scaled parameters. Let aj =

⌊ aj
K
⌋

be the scaled and rounded aj value for j = 1, 2, . . . , n, and let WWP(S& R)
be the scaled and rounded version of the WWP problem. Accordingly, our ob-
jective in WWP(S& R) is to find a partition τ of set A = {1, 2, . . . , n} into m
subsets τ1, τ2, . . . , τm such that f(τ) =

∑m
i=1(

∑
j∈τiaj)

k′ is minimized. In or-
der to present an FPTAS for the WWP problem, we provide a state space gener-
ation algorithm that optimally solve the WWP(S& R) in O

(
nmQm) time, where

Q =
∑n

j=1 aj.Then, we prove the following theorem.

Theorem 3. Solving the WWP(S&R) problem with K =
log(1+ε)Σn

j=1aj
k′mn and ε ≤ 2

3
yields an FPTAS for the WWP problem.
The longest processing time (LPT) heuristic is commonly used for solving the
stronglyNP-hard P ||Cmax problem. The heuristic begins by renumbering the n
jobs in a non-increasing order of processing times such that p1 ≥ p2 ≥ · · · ≥ pn.
Then, for j = 1, 2, . . . , n, the algorithm assigns job Jj to the least loaded machine
so far. Graham [1] proved that the LPTheuristic provides ( 43−

1
3m)-approximation
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algorithm for the P ||Cmax problem. A straightforward modification of the LPT
heuristic to solve the WWP problem would be to apply it with the aj parameters
replacing the pj parameters. We prove the following theorem.

Theorem 4. The modified LPT heuristic is h(m − v, k′, r∗)-approximation algo-
rithm for the WWP, where h(m − v, k′, r∗) = (m−v−r∗)(m−v+r∗+1)k′+r∗(r∗+1)k

′

(m−v)(m−v+1)k′
,

with D(v) =
n∑

j=v+1
aj, v = sup{J1, J2, . . . , Jn : aj ≥ D(j)

m−j+1}, A(v) =
n∑

j=v+1

aj
m−v ,

and r∗ is the r value that maximizes

g(r) =
(

A(v)
m− v+ 1

)k′ (
(m− v− r)(m− v+ r+ 1)k′ + r(r+ 1)k′

)
.
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1 Introduction

In many scheduling problems one cannot assume that job processing times are
fixed. There are two main groups of scheduling problems with variable job pro-
cessing timeswhich are considered in literature: time-dependent scheduling, where
the processing time of a job depends on its starting time (for a good review see [2])
and position-dependent scheduling, where the processing time of a job depends on
its position in a schedule (for a survey see [1]).

Themajority of papers on scheduling problems with variable processing times en-
tail two limitations. First, the results are mainly connected to scheduling on one
machine (see, e.g., [7]) or on parallel machines but with empty precedence con-
straints among jobs (see, e.g., [5]). Second, the most of results related to schedul-
ing problems with variable job processing times concern particular cases, not gen-
eral ones. Examples of recent general results are presented in [3].

2 Problem formulation

The group of problems to be presented during the talk can be formulated as fol-
lows. We are given a number of parallel identicalmachines andnnon-preemptable
jobs with some precedence constraints. Job processing times are variable and
depend on the position r of a job in a schedule. This dependency is described
by a positive and non-increasing discrete function φ of argument r. In other
words, the processing time of the j-th job on r-th position in a schedule is equal to
pj,r = φ(r), where 1 ≤ r, j ≤ n. The aim is to find a schedule with minimal max-
imum completion time or minimal total weighted completion time. Using the
commonly known scheduling notation (for a brief description see [2]), we denote
these problems by P|prec, pj,r = φ(r)|f, where f ∈ {Cmax,

∑
wiCi}.
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Special cases of these problems, when φ(r) = 1 for every r, are the problems of
scheduling jobs with unit job processing times, P|prec, pj,r = 1|f. Therefore, a
natural question is whether some known algorithms for the latter problem can
be applied to their counterparts with job processing times described by the φ
function. We give an answer to this question applying a new methodology of
transforming schedules. We also specify certain conditions, under which the
P|prec, pj,r = φ(r)|f problems can be solved by appropriately modified algorithms
for unit job processing times.

3 Our results

Let φ : N+ → Q+ be any discrete function satisfying the condition φ(r) > 0 for
every r ∈ N+, where N+ = N \ {0}. Moreover, let Φ be a function defined as
Φ(k) =

∑k
i=1 φ(i), where k ∈ N. Notice that Φ(0) = 0 and that the Φ function

is a bijection between its domain and image.

A schedule of n jobs is called a φ-natural schedule, if there is at least one job, such
that the starting time of this job is equal to 0 and for every job both its starting
and its completion time are the values of the Φ function at some points. If every
job started at time Φ(k) is completed at time Φ(k+ 1), then the schedule is called
a φ-simple schedule. If φ(r) = 1 for every r, then every φ-natural schedule is
called a a natural schedule and, consequently, every φ-simple schedule is called
a simple schedule. Notice, that every simple schedule is a schedule of jobs with
unit processing times.

A schedule is called a continuous schedule, if every machine starts the processing
of jobs at the moment 0 and none of the machines is idle before finishing all the
jobs assigned to it.
Lemma1. Let there be given a number of identical parallel machines able to execute
each of available jobs. If an algorithm A generates a continuous simple schedule for
job processing times in the form of pj,r = 1, then algorithmA generates a continuous
φ-simple schedule for job processing times in the form of pj,r = φ(r).
The above lemma is used in proofs of the following theorems.
Theorem 2. Let φ be a positive non-increasing discrete function and let I be arbi-
trary instance of the P|prec, pj,r = 1|f problem, where f ∈ {Cmax,

∑
wiCi,

∑
Ci}.

If algorithm A generates an optimal schedule for I and it is a continuous simple
schedule, then algorithm A generates also an optimal schedule for the correspond-
ing instance of the P|prec, pj,r = φ(r)|f problem and it is a continuous φ-simple
schedule.
Theorem 3. If the φ function is positive and non-increasing with respect to r, then
Hu’s algorithm [4] solves the P|in-tree, pj,r = φ(r)|Cmax problem.
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We will present and comment several examples of applications of the above the-
orems. Moreover, we will present some examples showing that the assumptions
of our theorems are reasonably strong. In particular, we will show some counter-
examples to several hypotheses, where the assumptions are weakened.

4 Future research

The results can be a base for further research on the problem of applying known
algorithms tomore general cases. It is an open question, whetherwe can construct
transformations such as presented here for other classes of schedules.
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1 Introduction

This talk is devoted to a single machine scheduling model, in which actual pro-
cessing times of the jobs are not constant but are subject to a special effect. Each
job j ∈ N = {1, 2, . . . , n} is associated with an integer pj that is called its ”normal”
processing time. This value can be understood as the actual processing duration
of job j, provided that the machine is in some initial state, and may change due to
a certain effect that extends a traditional cumulative effect. Under the cumulative
effect the actual processing time of job j depends on pj and on the sum of normal
processing times of all jobs sequenced earlier; see, e.g., [6]. In our model, the ac-
tual processing time of a job depends on the sum of certain parameters, other
than normal processing times, associated with previously scheduled jobs. For
the introduced model, we solve the problem of minimizing the makespan, with
and without precedence constraints. We also consider a situation when a mainte-
nance activity is included into a schedule and develop a fast fully polynomial-time
approximation scheme for this case.

2 Problem formulation

Suppose that the jobs of set N = {1, 2, . . . , n} are processed on a single machine
in accordance with a sequence π = (π (1) , π (2) , . . . , π (n)). Let pj (π; r) denote
the actual processing time of job j = π (r) scheduled in the r-th position of π.
Under the most studied cumulative effect, introduced in [6], we have that

pj (π; r) = pj

(
1+ b

r−1∑
h=1

pπ(h)

)A

, (1)
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where A is a given constant, and b is either equal to 1 or to −1. A drawback of
the model with a cumulative effect (1) is that normally no convincing practical
motivation of the model is given.

In this talk, we study a cumulative effect that arises when a job j ∈ N is asso-
ciated not only with the normal processing time pj but also with two additional
parameters, bj and qj > 0, so that

pj (π; r) = pj

(
1+ bj

r−1∑
h=1

qπ(h)

)
. (2)

For illustration of ourmodel, suppose that a floor sandingmachine is used to treat
floors in several rooms. The normal time pj is the time requirement for sanding
floors in room j, provided that the new sanding belt/disk is used. The value of
qj can be seen as the amount generated saw dust or an appropriately measured
wear of the sanding belt/disk, which depends on the area of room j and the initial
quality of the floor in the room but not explicitly on the time of treatment. The
rate parameter bj captures the fact that for some rooms the effect is less noticeable.

Let Pr (respectively, Qr) denote the sum of the pj values (respectively, qj values)
associated with the jobs scheduled prior to job π (r) .Denote the problem of min-
imizing the makespan Cmax under the effect (1) by 1

∣∣∣pj (1+ bPr)A
∣∣∣Cmax and its

counterpart under the effect (2) by 1
∣∣pj (1+ bjQr

)∣∣Cmax.

3 Our results

By reducing problem 1
∣∣pj (1+ bjQr

)∣∣Cmax to the classical scheduling problem
1 | |

∑
wjCj of minimizing the sum of weighted completion times, we prove the

following result.

Theorem 1. For problem 1
∣∣pj (1+ bjQr

)∣∣Cmax, an optimal schedule can be found
in O (n log n) time by sorting the jobs in non-increasing order of the ratios pjbj

qj .

We also study a version of problem 1
∣∣pj (1+ bjQr

)∣∣Cmax in which precedence
constraints are imposed on the set of jobs. These precedence constrains are given
in a form of a acyclic directed graph, with the nodes representing the jobs. Pro-
vided that the digraph is series-parallel, we denote the problems under effects (1)
and (2) by 1

∣∣∣pj (1+ bPr)A , SP− prec
∣∣∣Cmax and 1

∣∣pj (1+ bjQr
)
, SP− prec

∣∣Cmax,
respectively. We refer the reader to [3] for a range of results on single machine
scheduling with series-parallel precedence constraints and various effects, includ-
ing problems 1

∣∣pj (1+ Pr) , SP− prec
∣∣Cmax and 1

∣∣∣pj (1+ Pr)2 , SP− prec
∣∣∣Cmax.
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Extending the example given above, problem 1
∣∣pj (1+ bjQr

)
, SP− prec

∣∣Cmax
can arise if precedence constraints occur due to a particular physical layout of
the building in which the rooms to be sanded are located.

Using the theory of minimizing priority-generating functions over series-parallel
precedence constraints, which is described in detail in [7], we prove that for prob-
lem1

∣∣pj (1+ bjQr
)
, SP− prec

∣∣Cmax the objective function is priority-generating
and, therefore, the problem is solvable in O (n log n) time.

For the model with bj > 0, the actual processing times grow, and a mainte-
nance period (MP) can be introduced into a schedule. During an MP no pro-
cessing takes place. The duration of an MP is either a constant or depends on
its start time τ. In this talk, we address problem 1

∣∣pj (1+ bjQr
)
,MP (λ)

∣∣Cmax,
where MP (λ) means that the duration of the introduced single MP is λτ + μ,
for given constants λ and μ; in particular, MP (0) corresponds to the MP of du-
ration μ. Problem 1

∣∣pj (1+ bPr) ,MP (λ)
∣∣Cmax is studied in [4]. For problem

1
∣∣pj (1+ bjQr

)
,MP (λ)

∣∣Cmax, we additionally allow that theMPdoes not restore
the processing conditions back to the initial state, so that for job j scheduled after
the MP its normal processing time changes from pj to σpj, where σ ≥ 1.

Wedemonstrate that problem1
∣∣pj (1+ bjQr

)
,MP (λ)

∣∣Cmax can be reformulated
as the problem of Boolean programming of minimizing a function F(x) = H(x)+
K, where its variable part H(x) is a special non-separable quadratic function,
known as the half-product [1]. The problem of minimizing functionH(x) isNP-
hard in the ordinary sense, and the best known fully polynomial-time approxima-
tion scheme (FPTAS) requiresO

(
n2
ε

)
time [2]. However, an FPTAS for minimiz-

ing the function H(x) does not necessarily behave as an FPTAS for minimizing
the function F(x) = H(x) + K with an additive constant; see [2] and [5]. For the
problem of minimizing F(x) the following approach is outlined in [2]. Let LB and
UB be the lower and upper bounds on the optimal value of F(x∗).
Theorem2. For the problem ofminimizing function F(x), if the ratio UB

LB is bounded
from above by some positive γ, then there exists an algorithm that delivers a solution
x0 such that F(x0)− LB ≤ εLB in O(γ n2

ε ) time.
If the value of γ is bounded from above by a constant, then the algorithm from
Theorem 2 behaves as an FPTAS which requires O

(
n2
ε

)
time.

To be able to apply Theorem 2 we do the following: (i) reformulate problem
1
∣∣pj (1+ bjQr

)
,MP(λ)

∣∣Cmax as the problem of minimizing a special form of a
half-product related function F(x), known as a symmetric quadratic function [5];
(ii) prove that the objective function is convex; (iii) determine the lower bound
LB ≤ F(x∗) by solving the continuous relaxation of the problem in O

(
n2
)
time,

which is done by reducing the relaxed problem to finding a flow in a special net-
work that minimizes a convex quadratic cost function; (iv) round the solution
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to the continuous relaxation to find an upper bound UB such that there holds
LB ≤ F(x∗) ≤ UB ≤ 4LB. Thus, Theorem 2 holds with γ = 4, and hence prob-
lem 1

∣∣pj (1+ bjQr
)
,MP(λ)

∣∣Cmax admits an FPTAS that requires O
(
n2
ε

)
time.
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1 Introduction

We consider a general combinatorial optimization problem Popt in the following
setting, which is consistent with the definitions given in standard texts such as
Garey and Johnson [2], Papadimitriou and Steiglitz [4], Papadimitriou [3], and
Schrijver [5]. (We confine our consideration to minimization problems although
all the results are also valid for maximization problems.) There is given a set DP
of problem instances, a finite set X(I) of feasible elements for each I∈DP, and a
real-valued objective function F(I, x), x∈X(I). The aim is to find x∗ ∈X(I) such
that F(I, x∗)=min{F(I, x)|x ∈ X(I)} for the given instance I∈DP if X(I) ̸= ∅ or
report that X(I) = ∅.
The elements x∗ are called the optimal elements.
Hereinafter, x∗ means either argmin{F(I, x)|x ∈ X(I)} if X(I) ̸= ∅ or X(I) = ∅.
We provide a new reduction-based approach for proving theNP-hardness of op-
timization problems and establish that it includes the ”classical” approach as a
special case. We apply our alternative approach to prove the NP-hardness of a
problem that defies the classical approach. Besides, we construct a special case of
the problem with the property that finding an optimal element takes polynomial
time despite that computing the objective function values isNP-hard.

2 Our results

Following the conventional notion (see, e.g., [2]), we say that problem Popt isNP-
hard if there is a Turing reduction from any problem inNP to Popt.
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Consider the following problem associated with Popt:
Standard Decision Problem
Instance: I∈DP and a number y.
Output: ”yes” if there is an x0 ∈ X(I) such that F(I, x0) ≤ y; ”no” otherwise.
In particular, if X(I) = ∅, then the output is ”no”.

To show the NP-hardness of an optimization problem using the ”classical”
approach, one constructs a Standard Decision Problem that corresponds to
the original problem Popt and proves the NP-hardness of the former problem.
We refer to this procedure as the standard scheme for proving the NP-hardness
of an optimization problem.

Since x0∈X(I) such that F(I, x0)≤y exists if and only if F(I, x∗)≤y, the validity of
the standard scheme is based on the following Turing reduction of the Standard
Decision Problem to the optimization problem.

Step (a). Solve the optimization problem Popt.
Step (b). Given x∗ (found in Step (a)), calculate F(I, x∗) (if X(I) ̸= ∅).
Step (c). Compare F(I, x∗) and number y. Return ”yes” if F(I, x∗) ≤ y; otherwise
(if F(I, x∗) > y or if X(I) = ∅), return ”no”.

If both Step (a) and Step (b) can be executed in polynomial time, then the Stan-
dard Decision Problem is polynomially solvable. If the Standard Decision
Problem is proved to be NP-hard and Step (b) can be executed in polynomial
time, then Step (a) cannot be executed in polynomial time (unlessP = NP). The
latter fact allows us to conclude that the optimization problem is NP-hard. On
the other hand, if we have no polynomial algorithms to implement Step (b), then
we can say nothing about theNP-hardness of problem Popt.
Thus, the standard scheme works correctly if and only if Step (b) can be executed
in time polynomial of the input size of problem Popt.
Following [2], we denote by Length[I] the length of a reasonable encoding of
instance I.
By and large, the standard scheme works quite well. However, it cannot cope with
some odd cases where, e.g., given x∗∈X(I) for Popt problem, the value of F(I, x∗)
cannot be computed in time polynomial of Length[I].
It may be argued that such odd cases need no additional research because the
NP-hardness of computingF(I, x∗) implies theNP-hardness of searching for x∗.
To counter this argument, we present a polynomially solvable optimization prob-
lem with an objective function that cannot be calculated in polynomial time if
P ̸= NP. To construct an example of such a problem, we formulate a schedul-
ing problem involving parallel machines and jobs with start-time and position
dependent processing times.
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It seems that some researchers bear in mind the standard scheme in defining spe-
cial classes of optimization problems. Vazirani [6, Appendix A] considers a class
ofNP-optimization problems consisting of all optimization problems with poly-
nomially computable objective functions. The same restriction is used by Ausiello
et al. [1, Chapter 1] to define the classNPO of so-called constructive problems.
We do not confine our discussion to problems with polynomially computable
objective functions. So, the problems under consideration are in general outside
the classNPO and they are notNP-optimization problems.

To outline the basic idea of our approach to proving theNP-hardness of optimiza-
tion problems, we first analyze the standard scheme from the following point of
view. The Standard Decision Problem is formulated in such a way that it has
answer ”yes” if and only if F(I, x∗) ≤ y for a given number y. If we have the opti-
mal element x∗, then we can easily check whether F(I, x∗) ≤ y holds (if F(I, x∗) is
easily computable). On the other hand, if we do not have x∗, then the Standard
Decision Problem should beNP-hard, which implies theNP-hardness of the
corresponding optimization problem.

We develop our approach for analyzing problems with hard computable objective
functions. This means that we should avoid the calculation of the objective func-
tion values in our process of proving NP-hardness. In the standard scheme, we
use a property of the problem instance I to provide the correctness of the inequal-
ity F(I, x∗) ≤ y. The particular instance Imay have this property (then the answer
is ”yes” for the Standard Decision Problem) or it may not have the property (then
the answer is ”no”). Note that the checking of the property for I should be done
without knowing the element x∗ for instance I.
The main idea of our approach is to replace the property based on the inequality
F(I, x∗) ≤ y with a different property that does not involve the calculation of
the objective function values. The new property should possess two features. It
should be easily checkable if we are given an optimal element x∗ and its checking
should be an NP-hard problem if we have instance I and do not have x∗. Then
the NP-hardness of the optimization problem will follow immediately from an
argument similar to that used in case of the standard scheme.

The idea looks quite simple and almost evident upon its discovery. As with any
discovery, the most challenging aspect is to stumble upon an innovative insight
into a problem, which may take a long time to emerge.

The list of our results is as follows. We formulate our alternative approach to prov-
ing the NP-hardness of optimization problems and show that the classical ap-
proach is a special case of it. We formulate and analize a scheduling problem
with start-time and position dependent processing times of jobs (Problem 1) and
propose a simple but non-polynomial algorithm to solve it. We show that the
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objective function values of Problem 1 cannot be computed in polynomial time
if P ̸= NP . Besides, we construct a polynomially solvable special case of Prob-
lem 1 with the same property of having a hard computable objective function. We
use the alternative approach to show theNP-hardness of Problem 1.
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